Supplemental Notes for Chapter 4
Second Law: Concepts and Applications

Real, Irreversible, Quasi-static, and Reversible

Partially quasi-static

Real
(Irreversible)

Internally reversible

Quasi-static processes

- Along aquasi-static path dl intermediate states are equilibrium states; thus
from postulate | quasi-static paths for closed, simple systems can be described by two in-
dependent properties.

- From postulate Il, if asystem progressing dong aquasi-static pahis* isolaed’
from its environment, then the values of al properties will remain constant and equd to
those just before the isolation.

- Quasi-static processes occur a finite rates but not so rgpidly that the systemis
able to adjust on amolecular level. There would not be, in generd, gradients of any in-
tensive properties, such as temperature, pressure, density, etc.

- Expanding agas contained in africtionless piston-cylinder is not aquasi-static
process:
1. pull stops
2. rapid expansion during which adefinite dP/dz
gradient exists in the gas phase
P 3. pistonmoves rapidly as Pyas is greater than

gas
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Without any friction present, the gas expansion will clearly not be quasi-static.



If frictionis present so tha the expansion process occurs very slowly, dP/dz would be
negligible and the properties of the gas would remain constant if the expansion process
were stopped — that is, the system would stay in some stable equilibrium state. Thus,
with friction present in this manner, the expansion process is quasi-static. A similar
situation is encountered in the gas cylinder blowdown. The vave controls the blowdown
rate, resulting in aquasi-static process for the gas contained in the cylinder.

In fact, the adiabatic tank blowdown process could be model ed as a closed system gas
expansion against amassless piston that is frictionally damped to keep Pgas = Poutside. IN
this case, the process is quasi-static and:

du = - PdV =Pd(NV)
since N = constant

dU = NC,dT = - NPdV

for anidea gaswith P = RT/V, by eliminating V, we get
dT/T = —=R/IC, (dVIV) = —R/C, (dT/T —dP/P)
(RIC+1)dT/T = (RIC,)dP/P
If we had eliminated T, then dP/P =- (1+R/C,) dV/V and the same equations result by
treating the system as open. Upon integration, we obtain the familiar relationships for a
reversible, adiabatic expansion (or compression) of anided gas, namely,
PVk = constant and T/T; = (P/IP)X°P = (P/p)K Dk
where k © C,/C,andC, =C, +R
Reversible Processes

- ViaPostulae I, if any (red or ided) system in anon-equilibrium state isiso-
lated, it will tend toward a state of equilibrium.

- All red or naturd processes are not reversible. Hence reversible processes are
only idedizations that are very useful in showing limiting behavior. The performance of
red processesis frequently compared with ided performance under reversible conditions.

- "Inareversible process, dl systems must be in states of equilibrium a al times,
that is dl subsystems must traverse quasi-static paths."

- A system undergoing areversible process is no more than differentidly re-
moved from an equilibrium state — the system passes through aset of equilibrium states.

- "A processwill be cdledreversible if asecond process could be performedin
at least one way so that the system and dl elements of its environment can be restored to



their respective initid states, except for differentia changes of second order.” For exam-
ple, inareversible expansion or compression d(dW) ~ dPdV

- If acyclic processA > B - Aisreversible, then when the processis carried
out, no changes will occur in any other bodies. For example, if A = B involves the ab-
sorption of aquantity of heat Q, then B - A will reject the same quantity Q to the envi-
ronment.

- Any reversible process is dso quasi-static, but the reverse is not necessarily
true.

- Simple systems undergoing reversibl e processes have no internd gradients of
temperature or pressure.

- Friction and other dissipative forces are not present inreversible processes. A
truly reversible process will dways require aninfinitesima driving force to ensure that
energy transfer occurs without degradation, hence its rate would be infinitely slow.
Therefore, areversible process aways can be shown to require aminimum amount of
work or will yield a maximum amount of work.

- Heat enginesinreversible processes operate at maximum efficiency

Summary of the 2nd Law

- The 1st law involves primarily the principle of energy conservation and is not
sufficient to describe how anaturd processwill proceed.

- The 2ndlaw is concerned with describing the direction is which aprocess can
take place. For example, the flow of heat from ahot to acold body.

- The 2nd law describes, in mathematicd terms, the physica impossibility of re-
versing Joule's experiments. It is not possible to convert heat into an equiva ent amount
of work — some amount of heat must be transferred to asecond body or the environment
in the process of converting heat into work.

- Carnot heat engines operate cyclicdly and reversibly TH

between two isotherma reservoirsa Ty and Tc dQ, W
and awork reservoir. The efficiency of the dQ. ¢
Carnot process for converting heat into work is T

C

he= —dWydQx = (Th- Te)/ T Th>Tc

- Given areversible process where temperature changes, it is dways possible to
find areversible zig-zag path consisting of adiabatic-isothermd -adi abatic steps such that



the heat interaction in the isothermd stepis equd to the heat interaction of the origind
process.
- Definition of entropy Sas an derived state function

dS° dQ,y, /T (anexact differential)
DS= ¢S and ¢yS=0

- Clausius inequdity for describing heat interactions between two isotherma
reservoirs a Ta and Tg.

dQa/Tp+dQg/Tg 2 0

- For any fully reversible process, the equaity goplies, for dl others the inequd-
ity applies

- Areversible process adiabatic process occurs a constant entropy.
- For any red process,

(1) dS>0 (system+ surroundings)
(2) D§universe = D§wstem + D§surroundi ngs >0

- Entropy isameasure of the degradation of work producing potentid.

- All naturd processes inisolated, closed systems dways occur inadirection
that increases entropy.



Combined First and Second L aws

1. Closed, single phase, simple systems
Fromthe 1st Law: dE=dU = dQ + dW
For aninterndly reversible, quasi-static process with only PdV work:
dQ =dQ,o, =TdS and dW =dW,,, =- PdV
Therefore, dU= TdS- PdV which aso provides away to determine entha py changes:
Basis: 1 mole of ided gas of constant C,

dS=dU/T + P/TdV

dS—(_:I_VdT +—dV

with PV=RT

PeRdT KT dPu

C,
dS=2AdT + hully,
T T &P P2Y

combining terms:

gs= & Ry 9P
T P

or

2

S=DS= Cln Rln—
¢ n "'y




2. Open, single phase, simple systems

For aninternally reversible, quasi-static
process with one component entering and
leaving the system, dl intensive properties
must remain the same. Hence,

Tin=Touw =T
Fn=Fu =P
Uin :Uout =U
Sin =Sou =S
Vin :Vout =V gt

Figure 4.6

From amole baance, dN =dn;,, - dn,;. Now the 1st Law, which describes an energy
balance, can be written with only PdV work as:

dE =dU =dQ,,, - PdV +(U +PV)dN
and likewise an entropy ba ance can be formul ated as:

dS=dQq /T +SAN +dSye, =dQq, /T +SdN

since d§gen = Ofor thisreversible case. Now by substituting dQ,, into the 1st Law ex-
pression:

dU =TdS- PdV +(U + PV - TS)JdN =TdS- PdV +ndN
where | isthe chemicd potentid defined as:
MO GOU+PV-TS=H-TS

This result can be generdized for amulticomponent, single phase system thet is travers-
ing aquasi-static path as,

n
dU =TdS- PdV +& madN,
|

where U is acontinuous function of n+2 variables: U = f(S,V,N;) i=1,...n and



dU = (U /dS), ydS+(TU/V)snaV + g(ﬂg/ﬂNi Jsy oy ON;
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Availability (maximum and minimum work concepts)

As described in Section 14.1, consider aprocess
shown at the right that interacts with awork
reservoir and rejects heat to the surroundings.
Other constraints are:

5
Work
reservoir

Secondary system
- reversible/quasi-static operation Small Carnot engine
- steady state dn©° dnin = dnout | Heat reservoir a T,
thus dN = Ofor primary system
- Carnot heat engine operates cyclicly Figure 14.1
S0 dQ,is at the system temperature T

- dl heat dQg isrejectedisothermaly a Tg

A differentid steady state 1st Law bdance around the process (primary system) yields:
dE:O:dQs+d\Ns+(Hin' Hout)dn D

Where dW;represents the shaft work contribution. A steady state 1st |aw ba ance around
the Carnot heat engine gives:

dE =0=-dQ, + dQg +dW,

Where the — minus sign on dQreflectsits directiona change relaive to the primary sys-
tem, i.e.,, the engine isreceiving hea from the system.

dQs = dQr +dW )

Where dW, represents the Carnot heat engine work contribution. A steady state entropy
ba ance for the composite secondary system — the process and the heat engine yields:

dS=0=+dQg /T, + (S, - Spr)an €)

Combining equations (1), (2), and (3) to eliminate dQg and dQg and solving for the tota
work interaction (Carnot + shaft work) gives with rearrangement:



]

a dVVI :d\NtotaI = (d\Nc +d\Ns): [(Hout - |_|in)' To(sout - Sn)]dn (4)

Since we are deaing with areversible process, EqQ. (4) gives the maximum work per mole
that could be produced (or the minimum work required). Thisis cdled the availability %
or exergy:

B°H-T,S

DB Hoy - Hin~ To(Soun - Sn) =DH - T,DS 5)
Now Eq. (4) can be rewritten
Wi = (AW, + W) = DBan )
or by taking the time derivative to give maxi mum power:
W, = (DB)dn/dt = (DB)n (7

Clearly, the avail ability is astate function in the strictest mathematica sense so the
maximum (or minimum) work associated with any steady state processis aso independ-
ent of the path.
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